
Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

This paper presents a novel framework for genetically validating specific potential drug targets 

essentially by performing a locus-specific Mendelian Randomization analysis. 

This is a nice idea and will definitely become more valuable and feasible as we accumulate the 

necessary data to properly perform such analyses. Principally this will be of the form of tissue-

relevant protein QTL data. 

Unfortunately, such data is not currently available. The authors attempt to ameliorate this in a few 

ways, but this introduces new issues. 

On page 9, the authors suddenly switch to using LDL-C instead of protein abundance as introduced 

earlier in the paper. This does make some sense, but it feels a bit like a “bait-and-switch” in the 

overall arc of the paper as the discussion earlier is focused on protein abundance. Of course Sek 

Kathiresan and colleagues demonstrated the causal role of LDL-C on risk of MI via MR in their 

classic 2012 Lancet paper. I believe what’s novel here is the validation on a locus-by-locus basis 

that the general LDL-C influence on MI is recapitulated at each drug target locus. I believe the 

2012 Lancet paper isn’t even referenced. I think it would be valuable to discuss this approach and 

these results in the context of the 2012 paper. 

It’s not clear from the paper why they selected HDL-C as the intermediate trait for CETP instead of 

LDL-C. CETP certainly has genome-wide significant associations with LDL-C levels. In particular, it 

would be interesting to see the OR for CHD per sd of LDL for CETP along side those for NPC1L1, 

PCSK9 and HMGCR. If they selected HDL-C as the strongest association at CETP, this should be 

stated, but I still believe the LDL-C analysis would be instructive. 

The use of eQTLs as the exposure trait introduces multiple new issues. First is the assumption that 

mRNA abundance correlates with protein abundance, which is frequently not the case. See for 

example Chick et al, Nature 2016, Defining the consequences of genetic variation on a proteome-

wide scale. The authors state an assumption that there exists “a certain proportionality between 

mRNA and protein expression”, which I believe is unjustified as a general rule, even if it may apply 

to specific proteins. Clearly before applying this approach one would want to demonstrate a fixed 

proportionality for the specific gene of interest. 

The authors make much of the fact that different tissues give different eQTL results, even differing 

in directionality of impact. While this is certainly true for expression data, it must also apply to 

protein and biomarker abundance. Currently we mostly rely circulating protein and biomarker data 

and this shields us from the inevitable ambiguity we’ll observe when we have bulk pQTL and 

biomarker QTL data across multiple tissues and organs. The authors should directly address this 

and suggest approaches to deal with this ambiguity when it arrives. 

The authors benefit from the fact that for LDL-C most of the biology is presumably occurring in the 

blood, but this will not be true of many or most diseases. This limitation should be acknowledged 

and addressed. 

Overall I appreciate the contribution of this paper in developing methods to apply MR to the 

validation of individual potential drug targets. I think there are a number of assumptions and 

caveats as outlined above that should be fully discussed in the manuscript prior to publication. 

Small additions/corrections/suggestions: 

In the abstract: 



Qualify this statement: Proteins are [often/usually/frequently/typically] the proximal effectors 

Missing parenthesis: platforms, (e.g. from 

Could omit the following sentence – not clear how this adds to the point of this paper: 

Additional resources that can be utilised include GCTA, PrediXcan14 and MetaXcan15. 

Line 81 page 4 – I think the argument can be both both strengthened and weakened. 

In favor of proteins as an instrument over transcripts is the point (made earlier in the manuscript) 

that generally the biology (signaling, chemical reaction, transport) is carried out by the protein, 

not the transcript, so protein abundance is a more relevant exposure trait than mRNA abundance. 

A caveat to the “Central Dogma” argument is that theoretically you could still have reverse 

causality with the SNP affecting disease state which then drives protein abundance although this 

should be greatly mitigated by only considering cis-pQTLs. 

Line 151 page 7 – I had to read this sentence three or four times before I felt I understood the 

point the authors are trying to make. I’m not sure it adds anything to the paper and should 

perhaps be omitted: 

In the context of MR analysis of proteins, vertical and horizontal pleiotropy correspond to ‘pre-’ 

and ‘post’-translational effects respectively. 

Line 348, page 15: Grammer: 

…we accounted (conditioned) for pairwise LD used the European (EUR) 1000 genomes panel. 

Line 532, page 22: slight typo: 

clearly essential.it could be argued 

Line 575, page 24: slight typo 

level, or exposure level), 

I think the authors mean “expression” level 

Reviewer #2 (Remarks to the Author): 

In this manuscript, the authors propose proteins as more reliable exposures for Mendelian 

Randomization than other biological measures. They introduce an alternative for pQTL-based cis-

MR using instruments across an entire cis-region instead of distinct functional variants. At the case 

of four well-characterized lipid and CAD loci that encode targets for well-established drugs (HMGCR, 

PCSK9, NPC1L1, CETP) they introduce the concept of “drug target MR”, claiming their approach 

might increase precision and power of MR to validate drug targets. This is a well conducted and 

interesting study expanding the steadily increasing toolkit for MR. However, the mathematical 

concept appears to yield at best incremental insights over existing tools, and the analysis of just 

four drug targets that all have already been well studied earlier using MR adds little to existing 

knowledge. 

1. The authors list as one main argument why cis-instruments should be lumped together for 

protein-based MR the scarcity of functional variants, and specifically pQTLs, for most drug targets. 

However, they do not systematically compare their method to existing data and approaches 

beyond just two targets, despite extensive pQTL-based MR data on drug targets at many other 

GWAS loci and assessed with various platforms being publicly available (e.g., from Sun et al., Ref. 

8). How well does their approach compare to existing approaches across more targets? Can it live 



up to its promise when conducted at a much larger scale? 

2. The argument that cis-instruments may be “less prone to violating the ’no horizontal pleiotropy’ 

assumption” is unfounded. Unfortunately, a large number of cis-pQTLs have been demonstrated to 

also be trans-pQTLs, and there are numerous published examples where variants with the 2.5kB 

cut-off used in the paper impact mRNA and protein levels in trans. What evidence can the authors 

provide that their hypothesis is correct? 

3. If the MR analysis is aiming at estimating the effect of protein (P) on disease (D), the distinction 

between direct (φG) and indirect (μθ) effects of the protein on disease is irrelevant. The authors 

simply expand the PD path to include X, which is ignored in the protein-disease MR analysis 

described in lines 181-182 (since they eventually only provided an estimator for ω = the sum of 

direct and indirect effects of protein on disease). The real horizontal pleiotropy that they should 

worry about is the existence of φG, which could exist if 1) G has cis-effects on other proteins 

encoded in the same region, 2) G has trans-effects on other proteins, 3) G has effects on disease 

through other biological pathways that does not involve protein level change. Their lumping 

approach does address this. Also, this paper does not contribute to assess how MR could help to 

determine that φG could be in fact 0 (one of the key challenges in drug target validation). 

4. The authors discuss at length a smaller set of <4,500 “druggable genes”, but such dimension 

reduction from the full protein-coding genome is not being leveraged, e.g. for analyzing more than 

just the selected loci, or for multiple testing correction (the authors admit their current significance 

cut-offs are fairly lenient). Also, that “cis-MR for drug target validation requires the selection of 

genes for druggable proteins” (line 241) is plainly wrong: others have applied MR to targets that 

would not fall into this category (see e.g. Sun et al., Ref. 8), and the concept of what constitutes a 

good drug target has changed substantially over the recent years (see e.g., Plenge et al., Nat Rev 

Drug Disc 2013; PMID: 23868113 for discussing a more genetics perspective). The term “drug 

target MR” introduced here is thus certainly overstated: the method presented here might serve as 

one additional useful approach to validate drug targets through MR, but would most likely be used 

as one of several methods. I speculate that for most targets it will probably not turn out as the 

best one, but it’d be great to be convinced otherwise.



Reviewer 1 

1) This paper presents a novel framework for genetically validating specific potential drug 

targets essentially by performing a locus-specific Mendelian Randomization analysis. 

This is a nice idea and will definitely become more valuable and feasible as we accumulate 

the necessary data to properly perform such analyses.  

Response: We thank the reviewer for recognising the novelty and importance of the 

approach described in the manuscript.  

2) Principally this will be of the form of tissue-relevant protein QTL data.  Unfortunately, such 

data is not currently available. The authors attempt to ameliorate this in a few ways, but this 

introduces new issues. 

Response: We thank the reviewer for raising this important issue. Our aim was to use 

biological and mathematical arguments to indicate why locus-specific rather than genome 

wide Mendelian randomisation (MR) analysis is the appropriate approach for genetic 

validation of drug targets; but also, to outline and illustrate the challenges and decisions 

involved in such analyses. These include defining the loci of interest; selecting and 

accounting for linkage disequilibrium between genetic variants at a locus; and selecting the 

exposure variable through which to weight the effect of the selected genetic instruments; 

which is relevant to the specific point raised by the reviewer.  

In relation to the selection of the exposure variable, we considered the currently available 
choices, and considered the strengths and limitations of each. The available exposures for 

two-stage locus-specific MR analysis include: (locus- and tissue-specific) mRNA expression; 

the concentration of the encoded protein in the circulation, where this is found in the 

circulation and can be measured; or some downstream biomarker of protein action, where 

this is known and has been measured (for example, a circulating lipid fraction for a protein 

that affects lipid metabolism). The genetic variants associated with such exposures are 

available from GWAS data deposits or resources such as GTEX.  Measures that might 

become available in the future are tissue- and, eventually, cell- specific protein expression. 

We agree with the reviewer that ‘tissue-relevant protein QTL data’ may emerge in the future 

as the optimal exposure in locus-specific MR analysis for drug target validation. However, 

some of the challenges that currently apply to tissue-specific eQTL data (discussed further 

below) are likely shared by tissue-specific pQTLs.  

We would also add two points:  

First, many of the circulating proteins measured by the currently available proteomics 

platforms (e.g. from Somalogic [2036 druggable proteins] or O-link [973 druggable proteins]) 

are the actual efficacy targets for many approved or developmental monoclonal antibody 

therapeutics. Thus, the available circulating (rather than tissue-specific) proteomics data is 

already providing a step change in the ability to apply MR for genetic target validation 

through direct assay of the efficacy target. We have included analyses on five such 

examples in the revised manuscript to address this and other points raised by reviewer 2 

(vide infra). 
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Second, there has been no previous systematic analysis of the tissue expression profiles of 

genes encoding drug targets (nor tissue specific pQTLs), so identifying the ‘relevant’ (as 

opposed to convenient) target tissue for a drug target MR analysis is difficult using eQTL 

weighted analysis and currently not possible using pQTL weighted analysis as the reviewer 

indicates. As part of a separate but related project, we have recently undertaken an analysis 

that shows that, on average, the expression of drug target genes is broader than might be 

suspected, but that certain drug target encoding genes exhibit very narrow and others very 

broad expression profiles. We will report these findings in a separate paper. Therefore, to 

reflect the important general point raised by the reviewer, on the optimal exposure, and the 

related issues above, we have amended the manuscript on page 24 as follows: 

“We have used biological and mathematical arguments to formalise the distinction between locus-

specific Mendelian randomisation (MR) analysis for drug target validation, where the appropriate 

instruments are variants in or within the vicinity of the encoding genes, and the other types of 

Mendelian randomisation analysis, e.g. for biomarker validation, where instruments are used from 

throughout the genome. Using algebraic derivations, we show that because drug target MR considers 

the effects of perturbing a protein drug target on disease, this type of MR may be applied in settings 

where biomarker MR could be biased through horizontal pleiotropy.   

We also illustrate the challenges, and the choices to be made, when undertaking Mendelian 

randomisation for drug target validation. These include defining the loci of interest; selecting and 

accounting for linkage disequilibrium between genetic variants to be used as instruments; and 

selecting the exposure through which to weight the effect of the genetic instruments used.”   

We have also added the following on pp. 28-29: 

“Over 90% of drug targets are proteins, therefore weighting by protein expression in a disease-

relevant tissue would provide the most informative cis-MR analysis for drug target validation.  Many of 

the circulating proteins measured by the currently available proteomics platforms (e.g. from 

Somalogic [2036 druggable proteins] or O-link [973 druggable proteins]) are the actual biological 

efficacy targets of many licensed or developmental peptide or monoclonal antibody therapeutics. 

Thus, the available data on the circulating proteome already provides a step change in the ability to 

apply genetic target validation. We have illustrated the potential of this approach by conducting a cis-

MR and PheWAS for five such targets.   

Where drugs bind membrane bound or intracellular proteins which subsequently affect non-protein 

constituents of the circulating blood, it becomes possible to anticipate their effects using MR studies in 

which instruments in the gene encoding the corresponding drug target are weighted by their effect on 

a relevant circulating non-protein biomarker. We illustrated this with reference to four drug targets for 

lipid lowering (HMGCR, NPC1L1, PCSK9 and CETP). For two of these targets (PCSK9 and CETP) it 

was also possible to compare the findings of cis-MR analyses weighted by the level of the circulating 

protein with cis-MR analyses weighted by the relevant lipid fraction.  

However, for many drugs or drug targets, for example, those used in, or being developed for, the 

treatment of neurological, myocardial or musculoskeletal conditions, a circulating biomarker may be 

unavailable or may not represent a strong proxy for the drug target. Tissue-specific pQTL data has yet 

to be generated at any scale and, until such data become available, we investigated tissue specific 

eQTLs as a potentially relevant alternative exposure that might closely proxy pQTL effects. However, 

we found that eQTL-based MR estimates may differ both in magnitude as well as direction across 

tissues, as demonstrated by exhaustive analyses of the HMGCR, NPC1L1, PCSK9 and CETP loci. 
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This tissue-dependent heterogeneity was independently reported by the GTEx consortium for 

PCSK9
66

. We extend those observations to demonstrate their potential to undermine reliable causal 

inference when using mRNA expression as a weighting variable in MR analysis. Possibly, the 

observed heterogeneity may relate to the inclusion of non-European ancestries in the GTEx 

database
67

, or due to the post-mortem collection of samples
68

. For example, GTEx previously 

reported that gene expression changed post-mortem in a tissue-specific manner, which they 

attempted to ameliorate with multiple regression
68

. 

This tissue-specific heterogeneity likely reflects actual biology which might also extend to tissue-

specific pQTL data. A key uncertainty is identifying the ‘relevant’ tissue for a drug target validation MR 

analysis. This would be informed by greater knowledge of the expression profiles of all human drug 

targets, an area that has so far received limited attention. When these data become available it will 

become important to evaluate tissue dependency and the underlying mechanisms in more detail. 

Where it is relevant, and possible, to use circulating proteins or biomarkers such as lipids as exposure 

variables in two-stage drug target MR analysis this may help mitigate the complexity of weighting 

based on tissue-specific eQTL or pQTL data.” 

3) On page 9, the authors suddenly switch to using LDL-C instead of protein abundance as 

introduced earlier in the paper. This does make some sense, but it feels a bit like a “bait-

and-switch” in the overall arc of the paper as the discussion earlier is focused on protein 

abundance.  

Response: We apologise that the argument on the use of downstream biomarkers of 

protein action as an exposure variable in drug target MR analysis did not flow logically as 

part of the narrative arc as we intended it to. We have therefore amended the introduction as 

follows to rectify this issue.  

On page 6, we write: 

“Further questions include whether to weight such instruments in an MR analysis by the level of 

protein expression or activity, where the relevant assays are available; or, where they are not, by the 

level of mRNA expression (and, if so, in which tissue), or by some downstream consequence of 

protein action, e.g. differences in the level of a metabolite known to be influenced by the protein such 

as LDL-C for a lipid-lowering drug target.” 

On page 7, we now write: 

“Tissue specific eQTLs have been reported for all four genes and pQTL data for two of the proteins 

that circulate in the plasma (PCSK9 and CETP) allowing comparisons to be drawn between cis-MR 

analysis weighted by mRNA expression, protein expression and effects on downstream biomarkers, 

in this case the circulating lipid fractions LDL-C, HDL-C and triglycerides.” 

4) Of course Sek Kathiresan and colleagues demonstrated the causal role of LDL-C on risk 

of MI via MR in their classic 2012 Lancet paper. I believe what’s novel here is the validation 

on a locus-by-locus basis that the general LDL-C influence on MI is recapitulated at each 
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drug target locus. I believe the 2012 Lancet paper isn’t even referenced. I think it would be 

valuable to discuss this approach and these results in the context of the 2012 paper. 

Response: The excellent paper of Kathiresan and colleagues and other work (including our 

own – Holmes EHJ 2014) has demonstrated the use of Mendelian randomisation analysis to 

assess the causal relevance of the major circulating lipid fractions (LDL-C, HDL-C and 

triglycerides) for coronary heart disease (CHD). The reviewer is correct that whereas these 

analyses have utilised variants from throughout the genome as instruments, the approach 

we describe uses genetic instruments restricted to the target of interest (acting in cis). The 

two approaches are both relevant but seek to answer different questions. Whereas the 

former addresses the causal relevance of the biomarker (e.g. LDL-C) for CHD, the latter 

seeks to address whether modification of a specified drug target (e.g. PCSK9) will reduce 

CHD, and is more directly relevant to drug development. In these cases, genetic effects on 

LDL-C (for example) are merely used as a proxy for the unmeasured genetic association 

with PCSK9, a protein which is known to affect LDL-C. The new cross plots introduced in the 

Appendix Figure 1, which utilise GWAS summary statistics from the Global Lipid Genetics 

Consortium of blood lipids and the CardiogramPlusC4D consortium analysis of CHD, 

contrast biomarker and drug target MR analysis pictorially.  Whereas variants in the genes 

encoding representative drug targets for LDL-C modification show effects on CHD risk that 

are consistent with their association with LDL-C (and, for these licensed drug targets, with 

the results of clinical trials), variants in genes encoding drug targets affecting HDL-C 

concentration show effects on CHD risk that are not readily anticipated from their effect on 

HDL-C.  The examples illustrate why MR analyses of a circulating biomarker using variants 

selected from throughout the genome might not reliably infer the effect on a disease end-

point of modifying a specific target.” 

To incorporate the reviewer’s suggestion to discuss the approach in relation to the 

Kathiresan paper and blood lipids, we have amended the text on page 4 as follows: 

“For example, prior work has demonstrated the use of Mendelian randomisation analysis to assess 

the causal relevance of the major circulating lipid fractions (LDL-C, HDL-C and triglycerides) for 

coronary heart disease (CHD). These analyses have utilised variants from throughout the genome as 

instruments, whereas the approach we explore in this paper uses genetic instruments restricted to the 

target of interest (acting in cis). The two approaches are both relevant but seek to answer different 

questions. Whereas the former addresses the causal relevance of the biomarker for CHD, the latter 

seeks to address whether modification of a specified drug target will reduce CHD, and uses the 

biomarker as a proxy of protein level and activity. These two approaches may yield different estimates 

when the protein drug target, for example CETP, affects multiple biomarkers (e.g., HDL-C, and LDL-

C) through so-called post-translational pleiotropy (see below).  

In the case of blood lipids, whereas previous clinical trials have indicated that LDL-C lowering by 

whatever means is likely to reduce CHD risk, this has not proved the case for HDL-C. The cross plots 

in Appendix 1, contrast biomarker and drug target MR analysis pictorially. While variants in the genes 

encoding representative drug targets for LDL-C modification show effects on CHD risk that are 

consistent with their association with LDL-C (and, for licensed drugs, the results of clinical trials), 

variants in genes encoding drug targets affecting HDL-C concentration show effects on CHD risk that 

are not readily anticipated from their effect on HDL-C. The examples illustrate why MR analyses of a 

circulating biomarker using variants selected from throughout the genome might not reliably infer the 

effect on a disease end-point of modifying a specific target.” 
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5) It’s not clear from the paper why they selected HDL-C as the intermediate trait for CETP 

instead of LDL-C. CETP certainly has genome-wide significant associations with LDL-C 

levels. In particular, it would be interesting to see the OR for CHD per sd of LDL for CETP 

along side those for NPC1L1, PCSK9 and HMGCR. If they selected HDL-C as the strongest 

association at CETP, this should be stated, but I still believe the LDL-C analysis would be 

instructive. 

Response: We thank the reviewer for raising this point and we address it in three ways.  

The rationale for selecting HDL-C as the intermediate trait was that CETP inhibitors were 

developed on the basis of their HDL-C raising property (Brousseau et al, NEJM 2004), 

motivated by the inverse observational association between HDL-C and CHD (The 

Emerging Risk Factors Collaboration, JAMA 2009), and the finding that individuals with rare 

null mutations in CETP have very substantial elevations in HDL-C. Nevertheless, CETP 

inhibitor drugs also lower LDL-C and raise triglycerides, an effect shared by variants in the 

CETP gene. The finding that the CETP inhibitor drug anacetrapib also reduces CHD risk in a 

clinical trial has prompted speculation that the benefits arise the not from the HDL-C 

elevating but from the LDL-C lowering effect.  

The reviewer’s suggestion is therefore a very reasonable one and we have repeated the 

analyses for CETP using LDL-C weights and show consistent findings to those using HDL-C 

weights. We have amended the manuscript as follows on page 16: 

“Given the ongoing debate on whether the beneficial effect of CETP-inhibition depends on HDL-C 

raising or LDL-C lowering, we repeated these analyses using LDL-C weights (Appendix 6), with 

similar results to those observed using HDL-C weights.” 

Second, we have expanded the mathematical derivation of locus-specific drug target MR 

analysis. If the inference to be drawn is the protein effect on a disease outcome (CHD for 

example), performing a drug target MR using a biomarker downstream of the protein (as in 

HDL-C and LDL-C in the case of CETP), does not require the downstream biomarker to be 

causally related to CHD, though it may well be. Instead, all that is required is for the protein 

to affect the downstream biomarker. Clearly, based on the drug trial results, this requirement 

is met for CETP and HDL-C or LDL-C.  

We have added the following to the manuscript on page 11: 

“Furthermore, if the protein has a direct effect on the disease, that is not mediated by the downstream 

biomarker, ��� ≠ 0 does not provide evidence for the biomarker itself to causally effect disease; i.e, 

��� ≠ 0 does not imply � ≠ 0. The only additional requirement for using a “biomarker weighted” MR 

for drug target validation is that the protein is strongly correlated with the downstream biomarker, for 

example when � ≠ 0; which is a (slightly) different version of IV assumption (i).” 

Third, we incorporate a cis-MR analysis for CETP weighted by circulating CETP 

concentration (a cis-pQTL analysis) rather than any specific blood lipid fraction.  We have 

added the following on p 18: 
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“Of the four proteins considered here we had access to pQTL estimates from two GWAS’ of 

circulating CETP and PCSK9 concentration measured by enzyme-linked immunosorbent assays 

(ELISA)
44,45

, measured in 4000 and 3000 subjects, respectively. Initially focussing on variants in the 

same ±2.5KB region as before, we found circulating CETP increased CHD risk, consistent with the 

findings of a recent large-scale clinical trial where CETP inhibition reduces CHD risk (Figure 5). 

Similarly convincing results were seen for the analyses of log(PCSK9) concentration and CHD” 

6) The use of eQTLs as the exposure trait introduces multiple new issues. First is the 

assumption that mRNA abundance correlates with protein abundance, which is frequently 

not the case. See for example Chick et al, Nature 2016, Defining the consequences of 

genetic variation on a proteome-wide scale. The authors state an assumption that there 

exists “a certain proportionality between mRNA and protein expression”, which I believe is 

unjustified as a general rule, even if it may apply to specific proteins. Clearly before applying 

this approach one would want to demonstrate a fixed proportionality for the specific gene of 

interest. 

Response: We agree entirely that the use of eQTLs introduce new issues that we sought to 

highlight and explore as an important component of the manuscript. We felt this to be 

important as eQTLS are becoming widely used in such analyses motivated by the 

development of tools such as GSMR and S-Predixscan.  

We noted that the use of eQTLs requires the assumption of a proportionality between mRNA 

and protein expression but, as the reviewer points out, we did not give sufficient discussion 

to how likely this is to be the case. Chick et al. compared e- and pQTLs in liver tissue from 

192 outbred mice and found that 1400 of 6707 proteins studied had overlapping e and 

pQTLs and that among these the correlation between mRNA and protein abundance has a 

mean correlation of 0.5.  Among those proteins without a shared e and pQTL, the mean 

correlation was around 0.25.  

We have therefore amended the manuscript as follows on pages 19: 

“Because tissue-specific eQTL data is more widely available than tissue-specific pQTL data, we 

additionally evaluated the performance of MR analysis using mRNA expression level as the exposure 

variable. An analysis of this type assumes a certain proportionality between mRNA and protein 

expression, but the strength of this assumption has not been tested systematically across human 

tissues. We note that Chick et al
46

. compared eQTLs and pQTLs in liver tissue from 192 outbred mice 

and found that 1400 of 6707 proteins studied had overlapping eQTLs and pQTLs, and among these 

overlapping proteins showed a high. Among proteins without shared eQTLs and pQTLs, the mean 

correlation was around 0.25. Recognising this caveat, we obtained information on genetic effects on 

mRNA expression from GTEx version 7, for (1MB) cis-regions of all four genes studied here, based 

on post mortem tissues from 449 donors (84% of European descent).” 

7) The authors make much of the fact that different tissues give different eQTL results, even 

differing in directionality of impact. While this is certainly true for expression data, it must 
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also apply to protein and biomarker abundance. Currently we mostly rely circulating protein 

and biomarker data and this shields us from the inevitable ambiguity we’ll observe when we 

have bulk pQTL and biomarker QTL data across multiple tissues and organs. The authors 

should directly address this and suggest approaches to deal with this ambiguity when it 

arrives.  

Response: Thanks, we have added the following statement to the manuscript on page 30. 

“This tissue-specific heterogeneity likely reflects actual biology which might also extend to tissue-

specific pQTL data. A key uncertainty is identifying the ‘relevant’ tissue for a drug target validation MR 

analysis. This would be informed by greater knowledge of the expression profiles of all human drug 

targets, an area that has so far received limited attention. When these data become available it will 

become important to evaluate tissue dependency and the underlying mechanisms in more detail. 

Where it is relevant, and possible, to use circulating proteins or biomarkers such as lipids as exposure 

variables in two-stage drug target MR analysis this may help mitigate the complexity of weighting 

based on tissue-specific eQTL or pQTL data.” 

8) The authors benefit from the fact that for LDL-C most of the biology is presumably 

occurring in the blood, but this will not be true of many or most diseases. This limitation 

should be acknowledged and addressed. 

Response: Thanks. As a clarification, circulating LDL-C concentration (similar to other 

lipids) reflects enzymatic reactions and transporter functions that occur in the blood but also 

the gut wall (related to cholesterol absorption), in the liver (related to cholesterol synthesis) 

and in all cells (where cholesterol uptake and metabolism are key to normal function).  

However, noting the reviewer’s important point and to demonstrate generalisability to other 

non-lipid factors, we have now added a phenome-wide scan using pQTL protein exposures 

which further shows the generalizability of our approach, see pages 22-24.  

Moreover, we have also now strengthened discussion of the approach to the situation where 

no circulating protein or non-protein biomarker is available on p.28-29 as follows: 

“Over 90% of drug targets are proteins, therefore weighting by protein expression in a disease-

relevant tissue would provide the most informative cis-MR analysis for drug target validation.  Many of 

the circulating proteins measured by the currently available proteomics platforms (e.g. from 

Somalogic [2036 druggable proteins] or O-link [973 druggable proteins]) are the actual biological 

efficacy targets of many licensed or developmental peptide or monoclonal antibody therapeutics. 

Thus, the available data on the circulating proteome already provides a step change in the ability to 

apply genetic target validation. We have illustrated the potential of this approach by conducting a cis-

MR and PheWAS for five such targets.   

Where drugs bind membrane bound or intracellular proteins which subsequently affect non-protein 

constituents of the circulating blood, it becomes possible to anticipate their effects using MR studies in 

which instruments in the gene encoding the corresponding drug target are weighted by their effect on 

a relevant circulating non-protein biomarker. We illustrated this with reference to four drug targets for 

lipid lowering (HMGCR, NPC1L1, PCSK9 and CETP). For two of these targets (PCSK9 and CETP) it 
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was also possible to compare the findings of cis-MR analyses weighted by the level of the circulating 

protein with cis-MR analyses weighted by the relevant lipid fraction.  

However, for many drugs or drug targets, for example, those used in, or being developed for, the 

treatment of neurological, myocardial or musculoskeletal conditions, a circulating biomarker may be 

unavailable or may not represent a strong proxy for the drug target. Tissue-specific pQTL data has yet 

to be generated at any scale and, until such data become available, we investigated tissue specific 

eQTLs as a potentially relevant alternative exposure that might closely proxy pQTL effects. However, 

we found that eQTL-based MR estimates may differ both in magnitude as well as direction across 

tissues, as demonstrated by exhaustive analyses of the HMGCR, NPC1L1, PCSK9 and CETP loci. 

This tissue-dependent heterogeneity was independently reported by the GTEx consortium for 

PCSK9
66

. We extend those observations to demonstrate their potential to undermine reliable causal 

inference when using mRNA expression as a weighting variable in MR analysis. Possibly, the 

observed heterogeneity may relate to the inclusion of non-European ancestries in the GTEx 

database
67

, or due to the post-mortem collection of samples
68

. For example, GTEx previously 

reported that gene expression changed post-mortem in a tissue-specific manner, which they 

attempted to ameliorate with multiple regression
68

. 

This tissue-specific heterogeneity likely reflects actual biology which might also extend to tissue-

specific pQTL data. A key uncertainty is identifying the ‘relevant’ tissue for a drug target validation MR 

analysis. This would be informed by greater knowledge of the expression profiles of all human drug 

targets, an area that has so far received limited attention. When these data become available it will 

become important to evaluate tissue dependency and the underlying mechanisms in more detail. 

Where it is relevant, and possible, to use circulating proteins or biomarkers such as lipids as exposure 

variables in two-stage drug target MR analysis this may help mitigate the complexity of weighting 

based on tissue-specific eQTL or pQTL data.” 

9) Overall I appreciate the contribution of this paper in developing methods to apply MR to 

the validation of individual potential drug targets. I think there are a number of assumptions 

and caveats as outlined above that should be fully discussed in the manuscript prior to 

publication. 

Response: We thank the reviewer and hope the changes we have now made fully address 

the carefully highlighted issues. 

Small additions/corrections/suggestions: 

10) In the abstract: 

Qualify this statement: Proteins are [often/usually/frequently/typically] the proximal effectors 

Missing parenthesis: platforms, (e.g. from 

Could omit the following sentence – not clear how this adds to the point of this paper:  

Additional resources that can be utilised include GCTA, PrediXcan14 and MetaXcan15. 

Response: Thanks. Amended to: 
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“Proteins are typically the proximal effectors of biological processes encoded in the genome, and are 

becoming assayable on an -omics scale.” 

11) Line 81 page 4 – I think the argument can be both both strengthened and weakened. 

In favor of proteins as an instrument over transcripts is the point (made earlier in the 

manuscript) that generally the biology (signaling, chemical reaction, transport) is carried out 

by the protein, not the transcript, so protein abundance is a more relevant exposure trait 

than mRNA abundance. 

A caveat to the “Central Dogma” argument is that theoretically you could still have reverse 

causality with the SNP affecting disease state which then drives protein abundance although 

this should be greatly mitigated by only considering cis-pQTLs. 

Response: We thank the reviewer for raising this important point.  In response, we have 

added the following on page 5: 

“Finally, cis-MR of a protein risk factor greatly reduces the risk of reverse causation, because Crick’s 

dogma indicates that the pathway gene  encoded protein  disease would always be favoured 

over the pathway gene  disease  encoded protein, especially given that the gene  encoded 

protein association is typically derived from population-based (disease-free) samples. Thus, from an 

MR perspective, proteins are in a privileged position compared to other categories of risk factor and 

the use of cis-MR represents an optimal approach to instrument their causal effect for disease (See 

Appendix pages 3-5 and Appendix Figure 2-3)” 

12) Line 151 page 7 – I had to read this sentence three or four times before I felt I 

understood the point the authors are trying to make. I’m not sure it adds anything to the 

paper and should perhaps be omitted: 

In the context of MR analysis of proteins, vertical and horizontal pleiotropy correspond to 

‘pre-’ and ‘post’-translational effects respectively. 

Response: When proteins serve as the exposure of interest in Mendelian randomisation 

analysis it becomes possible to give biological context to the somewhat abstract concepts of 

vertical and horizontal pleiotropy. This is because horizontal pleiotropy equates to pathways 

from gene to disease which precede translation of the protein of interest, e.g. through 

alternative splicing or micro RNA effects. By contrast, vertical pleiotropy refers to the 

downstream actions of the translated protein, which should be reproduced by a drug with 

specific action on the protein. For this reason, we would like to retain the idea but agree we 

could explain it more clearly. We have changed the sentence on page 8 as follows: 

“When proteins serve as the exposure of interest in Mendelian randomisation analysis it becomes 

possible to give biological context to the concepts of vertical and horizontal pleiotropy. This is 

because horizontal pleiotropy equates to pathways from gene to disease which precede translation of 

the protein of interest, e.g. through alternative splicing or micro RNA effects. By contrast, vertical 

pleiotropy refers to the downstream actions of the translated protein, which should be reproduced by 
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a drug with specific action on the protein. Therefore, in the context of MR analysis of proteins, vertical 

and horizontal pleiotropy correspond to ‘pre-’ and ‘post’-translational effects respectively” 

13) Line 348, page 15: Grammer: 

…we accounted (conditioned) for pairwise LD used the European (EUR) 1000 genomes 

panel. 

Response: Thanks.  

14) Line 532, page 22: slight typo: 

clearly essential.it could be argued 

Response: Thanks. Changed to ‘…clearly essential. It could be argued…’ 

15) Line 575, page 24: slight typo 

level, or exposure level), 

I think the authors mean “expression” level 

Response: Thanks. ‘Exposure’ now changed to ‘expression’. 
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Reviewer 2 

15) In this manuscript, the authors propose proteins as more reliable exposures for 

Mendelian Randomization than other biological measures. They introduce an alternative for 

pQTL-based cis-MR using instruments across an entire cis-region instead of distinct 

functional variants. At the case of four well-characterized lipid and CAD loci that encode 

targets for well-established drugs (HMGCR, PCSK9, NPC1L1, CETP) they introduce the 

concept of “drug target MR”, claiming their approach might increase precision and power of 

MR to validate drug targets. This is a well conducted and interesting study expanding the 

steadily increasing toolkit for MR. However, the mathematical concept appears to yield at 

best incremental insights over existing tools, and the analysis of just four drug targets that all 

have already been well studied earlier using MR adds little to existing knowledge. 

Response: To clarify, we propose that if the aim of an MR analysis is to validate a drug 

target, over 90% of which are proteins, that the optimal design is a cis-MR analysis which 

utilises variants within or in the vicinity of a gene encoding the target of interest, that 

influence the expression or function of the encoded protein. We provide mathematical and 

biological arguments to support the proposal that cis-MR analysis is less prone to the ‘no 

horizontal pleiotropy’ assumption that is critical to robust causal inference.  

We already carefully highlight the insights provided by the mathematical concept as follows: 

 On p.10: “where the causal effect of the protein is the parameter of interest, we only need to 

assume that there is no direct effect of the genetic variant on disease, i.e. �� = 0, and the protein 

can have any mixture of direct (��), and indirect (��) effects. For this reason, MR analysis of 

protein-disease relationships is less prone to violation of the ‘no horizontal pleiotropy’ assumption 

than MR analysis of downstream exposures” 

 On p.10-11: “..a protein can remain the inferential target in an MR analysis even if it is not 

measured directly. .. 

��� =
��(�� + ��)

���
=
�� + ��

�
, 

=
1

�
× �,

with bw indicating ‘biomarker weighted’. Clearly because the denominator contains ���, instead 

of  ��, ��� does not equal �. However, ��� may still provide a valid null-hypothesis test of � = 0, 

because ��� ≠ 0 implies � ≠ 0. Furthermore, if the protein has a direct effect on the disease, that 

is not mediated by the downstream biomarker, ��� ≠ 0 does not provide evidence for the 

biomarker itself to causally effect disease; i.e, ��� ≠ 0 does not imply � ≠ 0. The only additional 

requirement for using a “biomarker weighted” MR for drug target validation is that the protein is 

strongly correlated with the downstream biomarker, for example when � ≠ 0; which is a (slightly) 

different version of IV assumption (i)..” 

 “On p.11 again: “In the absence of available measures of the protein of interest, a similar 

argument can be made for using mRNA expression (this time as an upstream variable) that 

proxies the effect of genetic variation on the level of the encoded protein again within the 

framework of a cis-MR analysis (see Appendix Figure 2): 
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��� =
��������(�� + ��)

����
=  ����(�� + ��), 

=  ���� × �

Here the weighting is done by the association with of mRNA expression, and the �� effect has 

been decomposed into the variant effect on expression ���� and the expression effect on protein 

level ����. Similar as for ���, the expression weighted (“ew”) drug target effect provides a valid 

test of � = 0 conditional on the absence of any horizontal pleiotropy predicting the protein effect; 

that is, a necessary assumption �� = �� = 0 (with index � for expression). It should be noted that, 

similar as for protein expression, mRNA expression level (eQTL) is tissue-specific, and utilizing 

eQTLs for drug target MRs necessitates a decision on the tissue(s) relevant for (de novo) drug 

development. We return to these issues later in the manuscript.” 

We therefore propose that the mathematical concept we introduce does provide substantial, 

complementary insight over existing tools for MR analysis, which have largely been devoted 

to approaches for dealing with horizontal pleiotropy that arises when instruments for MR 

analysis are selected from throughout the genome. Such a genome-wide approach is 

appropriate when interest is in the causal relevance of a non-protein biomarker (e.g. a 

circulating lipid fraction such as LDL-C, HDL-C or triglycerides) or an environmental 

exposure (e.g. smoking behaviour), because there is no such thing as a cis- instrument for 

traits such as these, but likewise the inferences drawn from such an analysis relate to the 

biomarker or environmental exposure not to any particular drug target. As we discuss in 

response to Reviewer 1 and illustrate through Appendix Figures 1, MR analyses of a 

circulating biomarker (e.g. HDL-C) using variants selected from throughout the genome 

might not reliably infer the effect on a disease end-point of modifying a specific target (e.g. 

CETP). 

On the point about generalisability, we initially focused on four well established positive 

controls of drug targets that are known to affect CHD and provide justification for this as 

follows on p.7: 

‘… we select examples where the effect of a drug has already been reliably quantified on the protein 

of interest; on a widely measured downstream mediator of its effect; and on the disease outcome for 

which the treatment is indicated; and where variants in the gene encoding the drug target have been 

associated with effects that are consistent with this knowledge. Four genes that fulfil these criteria are 

HMGCR, PCSK9, NPC1L1 and CETP that encode the targets of licensed or clinical phase drugs with 

known effects on lipids and coronary heart disease risk. Tissue specific eQTLs have been reported for 

all four genes and pQTL data for two of the proteins that circulate in the plasma (PCSK9 and CETP) 

allowing comparisons to be drawn between cis-MR analysis weighted by mRNA expression, protein 

expression and effects on downstream biomarkers, in this case the circulating lipid fractions LDL-C, 

HDL-C and triglycerides.’ 

However, given the important point about generalisability and scalability raised by the 

reviewer, we have now undertaken new analyses on five circulating, druggable targets for 

which genetic instruments acting in cis have been identified from a GWAS of approximately 

3000 circulating proteins measured in the INTERVAL study. We have used these 

instruments to conduct a phenome-wide scan across 35 outcomes relevant for drug 

development. 

The following has therefore been added on pp.22-24:  
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“To further showcase the generalizability of drug target MR across targets and outcomes, we 

conducted analyses that focused on circulating proteins that are the direct efficacy targets of clinical 

phase developmental or licensed drugs. Genetic instruments for cis-MR analyses were identified from 

the INTERVAL study which conducted a GWAS of around 3000 circulating proteins
8
, measured using 

the Somalogic aptamer based proteomics platform. From the reported data we identified five proteins 

encoded in the druggable genome
27

(F10, IL-12B, PLG, IL-1R1, MMP-9)  for which sufficient sentinel 

variants could be identified for the encoded protein. We then utilised the cis-MR approach described 

here to conduct phenome-wide association analysis against 35 clinically relevant disease and 

biomarker phenotypes (see methods).  

Circulating factor X (encoded by FX) was associated with a higher risk of any stroke (OR 1.13 95%CI, 

1.05,1.21), which is keeping with the use of direct acting anticoagulant drugs that inhibit factor X (e.g. 

apixaban) to prevent stroke in patients with atrial fibrillation
48

. Furthermore, we found a possible effect 

of factor X on asthma (OR 0.78 95%CI 0.62, 0.99) (Figure 26). The monoclonal antibody ustekinumab 

directed against a common subunit of interleukin 12 and interleukin 23 interferes with the binding of 

these cytokines with the IL-12 receptor to inhibit inflammatory signalling
49

. Ustekinumab has 

European marketing authorisation for the treatment of psoriasis and Crohn’s disease (CD) after 

demonstrating efficacy in clinical trials
50

, and is under evaluation for ulcerative colitis (UC). Consistent 

with this, genetically instrumented higher interleukin-12 subunit beta (encoded by IL12B) was 

associated with a higher risk of CD (OR 2.02; 95% CI 1.48, 2.76), UC (OR 1.56; 95% CI, 1.31, 1.87), 

and inflammatory bowel disease (IBD) (OR 1.56 95%CI 1.31, 1.87) (Figure 26). Genetically-

instrumented higher circulating concentration of plasminogen (encoded by PLG) was associated with 

a lower ischaemic stroke risk (OR 0.85; 95% CI 0.72, 1.00) (Figure 26), consistent with the known 

efficacy of recombinant tissue plasminogen activator (tPA) for acute ischaemic stroke
51

. The PLG 

association with an increased risk of any stroke (OR 1.06  95%CI 1.01, 1.11) is presumably due to an 

increase in haemorrhagic events. Increased levels of PLG were furthermore associated with 

increased risk of atrial fibrillation (AF), IBD, CD , Alzheimer’s disease (Figure 26) as well as lipids, and 

increased SBP (Figure 27) but these effects may not be observed therapeutically because tPA is 

given as a single dose in acute MI and ischaemic stroke. Higher circulating concentration of 

interleukin-1 receptor 1 (encoded by IL1R1) was associated with a lower risk of both CD, IBD and UC. 

This would be in keeping with the circulating form of the receptor functioning as decoy to reduce 

signalling through the membrane-bound form of the receptor by the pro-inflammatory cytokine 

interleukin 1. We also found evidence through cis-MR of a causative role for MMP9 in CD and IBD. 

Recent phase 2 trials failed to demonstrate efficacy of andecaliximab, a monoclonal antibody 

targeting MMP9 in either UC or CD
52,53

 (Figure 26). However, given the evidence from the MR 

analysis, further consideration should be given to the type, dose, frequency and duration of ant-MMP9 

therapy in Crohn’s disease, before this target is discounted.” 

and on page 32: 

“The phenome-wide scan utilized INTERVAL pQTL data from 5 drug targets and evaluated the 

protein effects on 35 outcomes using following publicly available resources: UK biobank data 

(nealelab.is/uk-biobank) were used for lipids (LDL-C, HDL-C, triglycerides [TG], lipoprotein A [LPa], 

Apolipoprotein B [ApoB], Apolipoprotein A1 [ApoA1]), glucose and HbA1c, leukocytes, lymphocytes, 

monocytes, and neutrophils counts. Blood pressure (systolic and diastolic [SBP, DBP]) data were 

used from Evangelou et al
70

 which includes the UKB as well. CKDGen consortium data provided 

information on blood ureum nitrogen (BUN), estimated glomerular filtration rate (eGFR), and chronic 

kidney disease (CKD)
71

. Bone mineral density (BMD)
72

 and fracture
73

 data were obtained from 

GEFOS Consortium. Genetic associations with “general cognitive function” were obtained from a 

meta-analysis of CHARGE, COGENT and UK biobank
74

. Data on CHD were available from 

CardiogramplusC4D
75

, any stroke, large artery stroke, cardioembolic stroke, and small vessel stroke 



14 

from the MEGASTROKE consortium
76

, Heart Failure (HF) from the HERMES
77

, atrial fibrillation (AF) 

from the AFgen consortium
78

, and finally non-ischemic cardiomyopathy (CM) from GRADE 

investigators
79

. Additional non-CVD phenotype data was extracted for type 2 diabetes (T2DM)
80

, 

Asthma
81

, inflammatory bowel disease (IBD)
82

, Chron’s disease (CD)
83

, ulcerative colitis (UC)
84

, 

multiple sclerosis (MS)
85

, and Alzheimer’s disease
86

.“ 

and page 34: 

“The drug target phenome-wide analysis was conducted by mapping the INTERVAL pQTL GWAS to 

the druggable genome
27

 and selecting the 5 most significant proteins with sufficient cis variants to 

conduct further analyses. Variants were selected from a 2kb window around the gene, excluding 

variants with a MAF of 0.05 or lower. The final set of instruments were selected based a LD-clumping 

algorithm where the LD-threshold is selected to prevent multi-collinearity issues (through comparison 

of the point estimates of threshold � to � − 1). Over-influential (high-leverage) or outlying variants were 

removed. Due to INTERVAL’s modest sample size the number of available variants were often limited, 

forcing us to use the IVW estimator and forgoing any possible eQTL screening on possible horizontal 

pleiotropy “ 

We have also added Appendix Figures 26-27.  

16) The authors list as one main argument why cis-instruments should be lumped together 
for protein-based MR the scarcity of functional variants, and specifically pQTLs, for most 
drug targets. However, they do not systematically compare their method to existing data and 
approaches beyond just two targets, despite extensive pQTL-based MR data on drug targets 
at many other GWAS loci and assessed with various platforms being publicly available (e.g., 
from Sun et al., Ref. 8). How well does their approach compare to existing approaches 
across more targets? Can it live up to its promise when conducted at a much larger scale? 

Response:  We apologize if the writing was not clear but do not wish to give the impression 

either that variants to be used as cis-instruments are scarce or that they should be ‘lumped 

together’. First, we sought to distinguish cis-MR analysis from the approach that has become 

the norm in MR analysis of non-protein biomarkers or environmental exposures where a 

single variant is selected from each contributing locus from throughput the genome.  

For this reason, we wrote on p.6: 

“Since cis-MR analysis restricts selection of genetic instruments to those located in, or in the vicinity of 

the encoding gene, new questions emerge as how to optimise the selection of such variants. These 

include how best to select and define the loci of interest, the physical distance around each gene from 

which instruments might be drawn; how to select genetic variants as instruments with options 

including “no selection”, “selection by strength of association”, or “according to functional annotation”. 

We extend the discussion of this issue on p.13 as follows (now adding some small edits as 

follows): 

“Drug target MR focuses on a single gene known to encode a protein, and variants within and around 

such a gene are used to characterize the effect of the drug target on a single or multiple outcome(s)… 

However, typically the nature and number of causal variant(s) is (are) unknown, imposing the need for 

instrument selection.” 
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Next, since there are typically many cis-acting variants at a locus that could be non-coding 

and affect mRNA and protein expression, or be coding and affect protein function in the 

absence of an effect on expression we considered the effect on MR estimates of sampling 

variants at random, of selecting variants based on EnsEMBL Variant Effect Prediction that 

reports the functional consequence of each variant and of harnessing LD in the region to 

maximise information on genetic variation at a locus without including highly correlated 

variants that might detabolise a statistical model.  

Stephen Burges (GenEpi) 2017 used simulated data to illustrate that modelling this LD 

increases power over simply selecting the most strongly associated variants and removing 

correlated variants. LD modelling increases power by forgoing the need to perfectly identify 

the causal variants within a specific region.  Similar results were reported for the GSMR 

application and LD modelling. LD modelling has been applied to increase power/precision in 

other settings as well, for example in COJO and similar applications.  

As described above, during revision we have extended the approach to incorporate data 

from Sun et al. on five circulating proteins that are direct efficacy targets of licensed or 

developmental drugs, incorporating a phenome-wide scan against 35 outcomes further 

illustrating the scalability and generalisability of the approach. The relevant additions are on 

p.22: 

“Further Examples: phenome-wide drug target analysis 
To further showcase the generalizability of drug target MR across targets and outcomes, we 

conducted analyses that focused on circulating proteins that are the direct efficacy targets of clinical 

phase developmental or licensed drugs. Genetic instruments for cis-MR analyses were identified from 

the INTERVAL study which conducted a GWAS of around 3000 circulating proteins
8
, measured using 

the Somalogic aptamer based proteomics platform. From the reported data we identified five proteins 

encoded in the druggable genome
27

(F10, IL-12B, PLG, IL-1R1, MMP-9)  for which sufficient sentinel 

variants could be identified for the encoded protein. We then utilised the cis-MR approach described 

here to conduct phenome-wide association analysis against 35 clinically relevant disease and 

biomarker phenotypes (see methods).  

Circulating factor X (encoded by FX) was associated with a higher risk of any stroke (OR 1.13 95%CI, 

1.05,1.21), which is keeping with the use of direct acting anticoagulant drugs that inhibit factor X (e.g. 

apixaban) to prevent stroke in patients with atrial fibrillation
48

. Furthermore, we found a possible effect 

of factor X on asthma (OR 0.78 95%CI 0.62, 0.99) (Figure 26). The monoclonal antibody ustekinumab 

directed against a common subunit of interleukin 12 and interleukin 23 interferes with the binding of 

these cytokines with the IL-12 receptor to inhibit inflammatory signalling
49

. Ustekinumab has 

European marketing authorisation for the treatment of psoriasis and Crohn’s disease (CD) after 

demonstrating efficacy in clinical trials
50

, and is under evaluation for ulcerative colitis (UC). Consistent 

with this, genetically instrumented higher interleukin-12 subunit beta (encoded by IL12B) was 

associated with a higher risk of CD (OR 2.02; 95% CI 1.48, 2.76), UC (OR 1.56; 95% CI, 1.31, 1.87), 

and inflammatory bowel disease (IBD) (OR 1.56 95%CI 1.31, 1.87) (Figure 26). Genetically-

instrumented higher circulating concentration of plasminogen (encoded by PLG) was associated with 

a lower ischaemic stroke risk (OR 0.85; 95% CI 0.72, 1.00) (Figure 26), consistent with the known 

efficacy of recombinant tissue plasminogen activator (tPA) for acute ischaemic stroke
51

. The PLG 

association with an increased risk of any stroke (OR 1.06  95%CI 1.01, 1.11) is presumably due to an 

increase in haemorrhagic events. Increased levels of PLG were furthermore associated with 

increased risk of atrial fibrillation (AF), IBD, CD , Alzheimer’s disease (Figure 26) as well as lipids, and 



16 

increased SBP (Figure 27) but these effects may not be observed therapeutically because tPA is 

given as a single dose in acute MI and ischaemic stroke. Higher circulating concentration of 

interleukin-1 receptor 1 (encoded by IL1R1) was associated with a lower risk of both CD, IBD and UC. 

This would be in keeping with the circulating form of the receptor functioning as decoy to reduce 

signalling through the membrane-bound form of the receptor by the pro-inflammatory cytokine 

interleukin 1. We also found evidence through cis-MR of a causative role for MMP9 in CD and IBD. 

Recent phase 2 trials failed to demonstrate efficacy of andecaliximab, a monoclonal antibody 

targeting MMP9 in either UC or CD
52,53

 (Figure 26). However, given the evidence from the MR 

analysis, further consideration should be given to the type, dose, frequency and duration of ant-MMP9 

therapy in Crohn’s disease, before this target is discounted.” 

Finally, the following was added to discuss these important considerations raised by the 

reviewer on p.26:  

“Clearly, if for any given locus one could perfectly distinguish the causal variants from null-variants, 

simply selecting the causal set of variants for MR will result in the most precise/powerful analysis. 

However, such “oracle” selection is unlikely in practice and difficult to scale. As such the proposed LD 

modelling approach will not in general select the perfect (i.e., the causal) set of variants, but instead it 

will select a robust set, which uses variants in LD with (unknown) causal variants as sentinels. 

Combining LD modelling with clumping requires no human input and is therefore highly scalable. 

Finally, we note, the analyses presented in Figure 2 and 5 are intended as an illustration of LD 

modelling, not as proof. The proof follows from straightforward statistical argument and simulation 

studies conducted by Burgess et al
58

, and the seminal work from Yang et al
61

 on COJO. “ 

18) The argument that cis-instruments may be “less prone to violating the ’no horizontal 

pleiotropy’ assumption” is unfounded. Unfortunately, a large number of cis-pQTLs have been 

demonstrated to also be trans-pQTLs, and there are numerous published examples where 

variants with the 2.5kB cut-off used in the paper impact mRNA and protein levels in trans. 

What evidence can the authors provide that their hypothesis is correct? 

Response:  We respectfully disagree with the reviewer that the statement about cis

instruments (for MR analysis of proteins) being less prone to violation of the horizontal 

pleiotropy assumption is unfounded. To be clear, the statement extracted by the reviewer 

comes from the following section of the introduction on p.5, which provides the context. 

“…Second, aside from mRNA expression, differences in protein expression or function are the most 

proximal consequence of natural genetic variation. This has two consequences: frequently, variants 

located in and around the encoding gene can be identified with a very substantial effect on protein 

expression in comparison to other traits; moreover such instruments may also be less prone to 

violating the ‘no horizontal pleiotropy’ assumption’ than variants located elsewhere in the genome 

(discussed below and ref 
15

). Third, in the case of MR analysis of proteins, Crick’s ‘Central Dogma’
16 

imposes an order on the direction of information flow from gene to mRNA to encoded protein, which 

does not extend beyond this to other biological traits that lie more distally in the causal chain that 

connects genetic variation to disease risk.” 

Thus for the avoidance of doubt, the statement about being less prone to horizontal 

pleiotropy relates both to the use of cis instruments and proteins as the exposure of interest. 
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The arguments that such an analysis is less prone to horizontal pleiotropy bias are based 

both on first-principles and on evidence. 

From first principles

As we state on p.7 
“For the effect estimate in MR to equate to a causal estimate the following critical assumptions should 

hold: (i) the genetic instrument is (strongly) associated with the exposure, (ii) the genetic instrument is 

independent of observed and unobserved confounders of the exposure-outcome association (which is 

secure because genetic variants are fixed and allocated at random), and (iii) conditional on the 

exposure and confounders, the genetic instrument is independent of the outcome (i.e. there is no 

instrument – outcome effect other than through the exposure of interest – the “no horizontal pleiotropy” 

assumption).” 

As we write on p.8: 

“The no horizontal pleiotropy assumption is violated when there are additional pathways by which the 

instrument may be related to the disease, sidestepping the exposure of interest. This could occur, for 

example if a genetic variant is in linkage disequilibrium (LD) with another variant that influences 

disease through a pathway distinct from the exposure, or if a genetic instrument also influences  

disease risk through another risk factor, located proximal to the risk factor of interest in the causal 

chain from gene to disease. In contrast, the association of a genetic instrument with exposures that lie 

in the causal chain distal to the exposure of interest (vertical pleiotropy) does not violate the 

assumptions underpinning MR analysis.” 

We illustrate the concept of horizontal pleiotropy in manuscript Figure 

1 (included here as well). Were the protein level MR is biased by the 

direct arrow from GD labels ��. The potential for horizontal 

pleiotropy increases the more distal the exposure of interest from the 

genetic variants that are used as instruments, for example an MR 

analyses geared towards obtaining a causal effect the downstream 

biomarker � → � would by biased if the horizontal pathways �� and 

�� were none-zero.  
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We next illustrate the reason that cis- instruments are relatively protected from horizontal 

pleiotropy vs. trans. instruments in an MR analysis of protein exposures using the series of 

diagrams (a-c).

Panel a illustrates a cis-MR analysis where the causal effect of the protein of interest (P1) for 

a disease outcome is instrumented using SNPs in its encoding gene (G1). Proteins P2 and P3 

are also altered by P1 and hence are also associated with G1 (an example of vertical 

pleiotropy), with P2 being a mediator of the effect of P1 on the disease outcome and P3 being 

a bystander in this example. Instruments in G1 are cis- for P1 but trans- for P2 and P3, but this 

is immaterial in this case because the instrumented protein is P1. The example illustrates 

how valid instruments for cis-MR can also have, and indeed would oftentimes be expected 

to also have, trans- effects.  However, this does not compromise the validity of cis

instruments because the protein instrumented (P1) must be upstream of all of the other 

proteins in the causal pathway.  

Panel b illustrates a situation where P1 is again the protein of interest and it remains causal 

for a disease outcome. However, in this analysis, the effect of P1 is instrumented by SNPs in 

a different gene (G4) encoding an unmeasured protein P4 (i.e. a trans-MR analysis). Here P4

affects P1 via a receptor and signalling cascade. In this example, P4 has no independent 

effect on disease outcome: its effect is through the protein of interest, P1.  For this reason, 

SNPs in G4 also associate with P2 and P3 (vertical pleiotropy). In this example, a trans-MR 

analysis provides the correct inference on the causal relevance of P1 for the disease 

outcome.  

However, panel c illustrates the counterfactual situation where P1 remains the protein of 

interest but this time it is not causal for the disease outcome. Its effect is again instrumented 

by SNPs in a different gene (G4) encoding an unmeasured protein P4 (i.e. the same trans-
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MR analysis). However, in this scenario, P4 affects disease outcome through a pathway 

independent of P1. This time the association of SNPs in G4 with P1 (and P2 and P3) is due to 

horizontal pleiotropy and any inference that there is a causal association of P1 with the 

disease outcome is erroneous. Notably, the situation in panel b (where P1 is causal) and 

panel c (where it is not) are indistinguishable using trans-MR analysis: in both cases G4

associates with P1 (the protein of interest), P2, P3 and the disease outcome. 

These first principles arguments, illustrated through panels a-c, show why the assertion is 

well founded that using cis instruments for MR analysis of proteins is less prone to violation 

of the horizontal pleiotropy assumption.  

Empirical evidence 

The reviewer also asks for empirical evidence for this assertion, which we provide using the 

example of the circulating protein C-reactive protein (CRP).  Circulating CRP concentration 

is associated with later risk of CHD in non-genetic observational studies but it was previously 

unclear if this association is causal, confounded or arises due to reverse causation. In 2011, 

in a paradigm example, we conducted a cis-MR analysis of CRP in CHD1 that proved the 

observational association is non-causal. Consistent findings were obtained by others2. 

Subsequent GWAS of CRP have been conducted and identified variants in genes outside 

CRP (acting in trans) that associate with CRP concentration, including in genes encoding 

the receptor for the inflammatory cytokine IL-6, and the gene ApoC1, involved in lipid 

metabolism. Variants in IL6R that are associated with lower CRP concentration are 

associated with lower risk of CHD3,4 and variants in ApoC1 that are associated with higher 

concentration of CRP are associated with increased risk of CHD. Given the findings of the 

cis-MR of CRP on CHD and the known causal role of LDL-C for this outcome, from both 

genetic analyses and trials, using variants in APOC1 acting in trans to probe the causal 

relevance of CRP for CHD would be prone to confounding by horizontal pleiotropy. The 

same argument applies to the use of variants in IL6R for the same purpose. Signalling 

through the interleukin-6 receptor encoded by IL6R influences many inflammatory molecules 

beyond CRP that are the likely mediators of its effect on CHD.  

Rebuttal References 
1.  Wensley F, Gao P, Burgess S, Kaptoge S, Di Angelantonio E, Shah T, Engert JC, Clarke R, Davey-Smith G, 
Nordestgaard BG, Saleheen D, Samani NJ, Sandhu M, Anand S, Pepys MB, Smeeth L, Whittaker J, Casas JP, Thompson SG, 
Hingorani AD, Danesh J. Association between C reactive protein and coronary heart disease: mendelian randomisation 
analysis based on individual participant data. BMJ 2011;342:d548.  
2.  Genetic Loci Associated With C-Reactive Protein Levels and Risk of Coronary Heart Disease | Genetics and Genomics | 
JAMA | JAMA Network. https://jamanetwork.com/journals/jama/fullarticle/184182 (9 March 2020) 
3.  Sarwar N, Butterworth AS. Interleukin-6 receptor pathways in coronary heart disease: A collaborative meta-analysis of 82 
studies. The Lancet 2012;379:1205–1213.  
4.  Swerdlow DI, Hingorani AD, Casas JP, Consortium IMR. The interleukin-6 receptor as a target for prevention of coronary 
heart disease: a mendelian randomisation analysis. Lancet 2012;379:1214–1224.  

To ensure readers have access to these concepts, we have included additional text and the 

panels in a new section of the Appendix entitled: ‘Reducing horizontal pleiotropy in MR 

analysis based on protein exposures and cis instruments.). We refer to this new section on 

p.5 of the revised paper as follows:  

“Thus, from an MR perspective, proteins are in a privileged position compared to other categories of 

risk factor and the use of cis-MR represents an optimal approach to instrument their causal effect for 

disease (See Appendix pages 3-5 and Appendix Figure 2-3).” 
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We have also added the following discussion on page 27-28.  

“MR of protein exposure have been conducted before, sometimes selecting both cis and trans and 

sometimes even trans only variants. However, the use cis instruments for MR analysis of proteins is 

less prone to violation of the horizontal pleiotropy assumption than the use of trans instruments (see 

Appendix pages 3-5) and is amply illustrated by the example of CRP. Circulating CRP concentration 

is associated with CHD risk in non-genetic observational studies, but it was previously unclear if this 

association is causal, confounded or arises due to reverse causation. In 2011, in a paradigm example, 

we conducted a cis-MR analysis of CRP in CHD
62

 that proved the observational association is non-

causal. Consistent findings were obtained by others
63

. Subsequent GWAS of CRP have been 

conducted
64

 and identified variants in genes outside CRP (acting in trans) that associate with CRP 

concentration, including in genes encoding the receptor for the inflammatory cytokine IL-6 the ApoC1, 

involved in lipid metabolism. Variants in both IL6R that are associated with lower CRP concentration 

are associated with lower risk of CHD
7,28

 and variants in APOC1 that are associated with higher 

concentration of CRP are associated with increased risk of CHD
65

. However, it would be erroneous to 

suppose that a trans-MR analysis of CRP instrumented using APOC1 variants provides evidence of a 

causal role of CRP in CHD
65

 since the same variants are also associated with LDL-C. Given the 

findings of the cis-MR of CRP on CHD and the known causal role of LDL-C for this outcome, from 

both genetic analyses and trials, using variants in APOC1 acting in trans to probe the causal 

relevance of CRP for CHD would be prone to confounding by horizontal pleiotropy. The same 

argument applies to the use of variants in IL6R for the same purpose. Signalling through the 

interleukin-6 receptor encoded by IL6R influences many inflammatory molecules beyond CRP that 

are the likely mediators of its effect on CHD.” 

Because cis-MR analysis greatly reduces but does not completely abolish the scope for 

horizontal pleiotropy, which can still arise, for example by confounding through LD, we have 

also added an additional approach to help identify potential horizontal pleiotropy using eQTL 

data. The section is on p.22 as follows: 

“Using eQTLs to screen for horizontal pleiotropy

A key assumption of any drug target Mendelian randomization study is the absence of horizontal (pre-

translational) pleiotropic pathway. For example, a variant associated with PCSK9 expression may 

also associate (e.g., through LD) with the expression of other genes. To explore this, we sequentially 

pruned the GTeX expression eQTL data for an association with the expression of a “non-target” gene 

within 1 MB of the encoding locus (based on a p-value threshold of {1 × 10��, … , 1 × 10��}; Appendix 

Figure 26). In general, across the 4 positive control loci, we did not see much influence of LD-based 

horizontal pleiotropy; and within a single tissue we did not observe much directional discordance. For 

each drug-target we do observe a few tissue-specific associations that only obtain significance after 

pruning potential pleiotropic variants to a very low p-value threshold. For example, CETP expression 

in the colon is only associated with CHD after removing variants that had a p-value < 1 × 10�� with 

neighbouring genes. Note that the type of eQTL horizontal pleiotropy screening proposed here can be 

applied irrespective of the intended exposure, for example it could also be used in drug target MR 

analyses using pQTL exposures. “ 

19) If the MR analysis is aiming at estimating the effect of protein (P) on disease (D), the 

distinction between direct (φG) and indirect (μθ) effects of the protein on disease is 

irrelevant. The authors simply expand the PD path to include X, which is ignored in the 

protein-disease MR analysis described in lines 181-182 (since they eventually only provided 
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an estimator for ω = the sum of direct and indirect effects of protein on disease). The real 

horizontal pleiotropy that they should worry about is the existence of φG, which could exist 

if 1) G has cis-effects on other proteins encoded in the same region, 2) G has trans-effects 

on other proteins, 3) G has effects on disease through other biological pathways that does 

not involve protein level change. Their lumping approach does address this. Also, this paper 

does not contribute to assess how MR could help to determine that φG could be in fact 0 

(one of the key challenges in drug target validation). 

Response: We fully agree that the critical horizontal pleiotropy assumption is that φG = 0. 

The derivations aim to convey exactly this message, and we are pleased that the reviewer 

came to the same conclusion.  

Horizontal pleiotropy of the type φG \neq 0, can occur when a gene encodes multiple 

proteins (all affecting disease), or when variants within the gene are associated with other 

loci (and these loci cause disease). The potential influence of this later type of horizontal 

pleiotropy can be identified by screening the variants within a cis region for associations with 

expression of other genes. This was implemented and described on pages 22: 

“Using eQTLs to screen for horizontal pleiotropy

A key assumption of any drug target Mendelian randomization study is the absence of horizontal (pre-

translational) pleiotropic pathway. For example, a variant associated with PCSK9 expression may 

also associate (e.g., through LD) with the expression of other genes. To explore this, we sequentially 

pruned the GTeX expression eQTL data for an association with the expression of a “non-target” gene 

within 1 MB of the encoding locus (based on a p-value threshold of {1 × 10��, … , 1 × 10��}; Appendix 

Figure 26). In general, across the 4 positive control loci, we did not see much influence of LD-based 

horizontal pleiotropy; and within a single tissue we did not observe much directional discordance. For 

each drug-target we do observe a few tissue-specific associations that only obtain significance after 

pruning potential pleiotropic variants to a very low p-value threshold. For example, CETP expression 

in the colon is only associated with CHD after removing variants that had a p-value < 1 × 10�� with 

neighbouring genes. Note that the type of eQTL horizontal pleiotropy screening proposed here can be 

applied irrespective of the intended exposure, for example it could also be used in drug target MR 

analyses using pQTL exposures. “

And pages 25: 

“We further introduce an exploratory analysis to determine the influence of horizontal pleiotropy, 

pruning variants that associate with other genes around a locus encoding a drug target. “

20) The authors discuss at length a smaller set of <4,500 “druggable genes”, but such 

dimension reduction from the full protein-coding genome is not being leveraged, e.g. for 

analyzing more than just the selected loci, or for multiple testing correction (the authors 

admit their current significance cut-offs are fairly lenient).  

Response: We agree that a druggable genome wide association analysis focusing on 

variants in and around the 4500 druggable genes could be done and would reduce the 

multiple testing burden compared to a classical GWAS. Indeed in our previous Science 
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Translational Medicine paper (Finan, Gaulton et al. The druggable genome and support for 

target identification and validation in drug development) updated the estimate of the 

druggable genome and designed and co-developed with illumina the DrugDev genotyping 

array with enhanced coverage of the genes encoding druggable targets. In that paper we 

wrote: 

“Fulfilling the potential of GWAS (and studies using disease-focused genotyping arrays) for drug 

development requires mapping disease- or biomarker-associated SNPs to genes encoding druggable 

proteins and to their cognate drugs and drug-like compounds…. 

….We therefore updated the set of genes comprising the druggable genome. We then linked GWAS 

findings curated by the National Human Genome Research Institute and European Molecular Biology 

Laboratory, European Bioinformatics Institute (EMBL-EBI) GWAS catalog to this updated gene set, as 

well as to encoded proteins and associated drugs or drug-like compounds curated in the ChEMBL 

and First Databank (FDB) databases…. 

“In addition, to better support future genetic studies for disease-specific drug target identification and 

validation, we assembled the marker content of a new genotyping array designed for high-density 

coverage of the druggable genome and compared this focused array with genotyping arrays 

previously used in GWAS.” 

Moreover, in our 2017 bioRxiv pre-print and 2019 Scientific Reports paper (Hingorani AD et 

al. Improving the odds of drug development success using human genomics. Modelling 

study) we refer to the potential of ‘druggable genome wide association studies’ and showed 

a figure related to that particular study design (Figure 7 of that paper).  

Moreover, we already provide a discussion of the appropriate significance threshold in the 

Discussion. For absolute clarity we have amended this as follows: 

“In other settings, for example gene-based MR analysis of all 4500 druggable genes, appropriate 

control of false discovery rates is clearly essential. It could be argued that applying a genome-wide 

association p-value threshold (e.g.  5 × 10��) will be needlessly conservative. Instead of applying the 

typical GWAS multiplicity correction one could control for the number of druggable proteins (about 

5000; resulting in a 1 × 10�� threshold).” 

Also, that “cis-MR for drug target validation requires the selection of genes for druggable 

proteins” (line 241) is plainly wrong: others have applied MR to targets that would not fall into 

this category (see e.g. Sun et al., Ref. 8), and the concept of what constitutes a good drug 

target has changed substantially over the recent years (see e.g., Plenge et al., Nat Rev Drug 

Disc 2013; PMID: 23868113 for discussing a more genetics perspective).  

Response: Of course, we agree that cis-MR can be applied to any protein regardless of 

druggability, provided there are appropriate genetic instruments, and nowhere in the paper 

do we argue that it shouldn’t. However, if the aim is drug development, it is clear that it 

would be sensible to prioritise druggable proteins. We also agree that the range of druggable 

proteins is not fixed. Indeed, our own Science Translational Medicine paper expanded the 

druggable genome from around 2000 to over 4000 proteins. Moreover, new therapeutic 
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modalities e.g. RNA silencing, are extending the range of therapeutic targets beyond those 

that are currently amenable to the action of small molecules, peptides and monoclonal 

antibody therapeutics that target proteins, and which remain the mainstay of drug 

development.   

We have therefore added the following on p.31: 

“We also emphasise that the range of druggable proteins is not fixed. Indeed, our own previous paper 

expanded the druggable genome from around 2000 to over 4000 proteins
27

. Moreover, new 

therapeutic modalities e.g. RNA silencing, are extending the range of therapeutic targets from those 

that are currently amenable to the action of small molecules, peptides and monoclonal antibody 

therapeutics that target proteins, and which remain the mainstay of drug development.”  

The term “drug target MR” introduced here is thus certainly overstated: the method 

presented here might serve as one additional useful approach to validate drug targets 

through MR, but would most likely be used as one of several methods. I speculate that for 

most targets it will probably not turn out as the best one, but it’d be great to be convinced 

otherwise. 

Response: The concept of drug target MR is introduced to differentiate the validation of a 

drug target through MR from the more traditional MR that is often focussed assessing the 

casual relationship of more distal exposures such as BMI (see extensive response to 

Reviewer 1 on this issue). The reviewer is correct that cis-MR or even trans-MR of protein 

exposures have been applied irrespective of the druggability of the protein; as referred to in 

Sun et al. However, such analysis can only provide actionable insight for drug development 

when the protein itself may possibly be drugged (whether with current methodologies or after 

future refinements). As such drug target MR can be seen as a subcategory of protein 

exposure MR, explicitly aiming to inform drug development. Clearly what is, and is not, 

druggable is continually changing, as such with the current paper we set out to introduce a 

general framework that can be used irrespective of type of drug target.  

We also fully agree that drug target MR is only one specific form of drug target validation 

and envision that future challenges revolve around combining multiple (genetic as well as 

non-genetic) sources of evidence on the likely in human efficacy of a drug target.  

The following was added, on p.31 

“In this current manuscript we have exclusively focussed on Mendelian randomization as a tool for 

drug target validation, however many complimentary methods exist, often utilizing non-genetic cell, 

tissue and animal experiments. A key challenge to further improve (early) drug development will be to 

incorporate these differs sources of evidence to accurately predict in-human efficacy.” 

and the following on p.27-28  

“MR of protein exposure have been conducted before, sometimes selecting both cis and trans and 

sometimes even trans only variants. However, the use cis instruments for MR analysis of proteins is 

less prone to violation of the horizontal pleiotropy assumption than the use of trans instruments (see 
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Appendix pages 3-5) and is amply illustrated by the example of CRP. Circulating CRP concentration 

is associated with CHD risk in non-genetic observational studies, but it was previously unclear if this 

association is causal, confounded or arises due to reverse causation. In 2011, in a paradigm example, 

we conducted a cis-MR analysis of CRP in CHD
62

 that proved the observational association is non-

causal. Consistent findings were obtained by others
63

. Subsequent GWAS of CRP have been 

conducted
64

 and identified variants in genes outside CRP (acting in trans) that associate with CRP 

concentration, including in genes encoding the receptor for the inflammatory cytokine IL-6 the ApoC1, 

involved in lipid metabolism. Variants in both IL6R that are associated with lower CRP concentration 

are associated with lower risk of CHD
7,28

 and variants in APOC1 that are associated with higher 

concentration of CRP are associated with increased risk of CHD
65

. However, it would be erroneous to 

suppose that a trans-MR analysis of CRP instrumented using APOC1 variants provides evidence of a 

causal role of CRP in CHD
65

 since the same variants are also associated with LDL-C. Given the 

findings of the cis-MR of CRP on CHD and the known causal role of LDL-C for this outcome, from 

both genetic analyses and trials, using variants in APOC1 acting in trans to probe the causal 

relevance of CRP for CHD would be prone to confounding by horizontal pleiotropy. The same 

argument applies to the use of variants in IL6R for the same purpose. Signalling through the 

interleukin-6 receptor encoded by IL6R influences many inflammatory molecules beyond CRP that 

are the likely mediators of its effect on CHD.” 



REVIEWERS' COMMENTS: 

Reviewer #1 (Remarks to the Author): 

I appreciate the changes the authors have made to the study and the paper. I think it is a much 

stronger contribution now. 

For what it's worth, I agree with the authors' response to reviewer 2's concern about horizontal 

pleiotropy from cis-pQTLs. I think evidence from GTEx and Sun et al shows that cis-eQTLs are 

more likely to impact multiple genes than cis-pQTLs. 

There are still numerous small typos scattered through-out the paper. The manuscript could use a 

final thorough editorial review but otherwise I fully endorse its publication. 

Reviewer #2 (Remarks to the Author): 

In their revised manuscript, the authors aim to provide clarifications to my concerns by adding 

additional content. Among others, they extend the scope of their work by applying cis-MR to five 

additional drug targets using pQTLs from the INTERVAL study and conducting phenome scans 

across 35 traits. I continue to find merit in the manuscript for introducing a mathematical concept 

why cis-MR on proteins can support drug target validation and for well illustrating the various 

challenges and pitfalls of locus-specific MR. However, I remain unconvinced that their approach is 

novel, and that joint analyses of multiple unselected variants per locus will yield more than just 

incremental insights for the vast majority of proteins when analyzed systematically. As is, the 

manuscript to me does not provide sufficient evidence for several of the claims made and overall 

continues to lean towards overstatements, possibly best reflected in a title that is very generic 

instead of specifically stating what’s been done and what’s new. For instance, 

15) Locus-specific MR to validate distinct drug targets is not a new concept, but broadly applied in 

industry and academia. This is evidenced by an increasing number of publications, which (on a 

coarse look-up) include PMID: 25726324 for IL1RN, PMID: 31558144 for F11, PMID: 31253830 for 

IL18, PMID: 30865797 for ACLY, or PMID: 29875488 for IL6R, IL12/23, or GP1BA among others. 

16) I appreciate the expansion of the manuscript and application of cis-MR to 5 additional drug 

targets, although several of the selected genes have already been analyzed nearly identically with 

pQTL-based MR phenome-scans (across multiple GWAS traits) in the source paper (Sun et al., 

PMID: 29875488; Supplemental Table 16). What would have been interesting to compare in this 

current manuscript is: Does clumping of cis-instruments across a gene region as proposed in the 

manuscript yield benefits to single SNP-based cis-MR (as applied by Sun et al.) and colocalization 

analysis (state of the art now) when applied systematically to a larger number of drug target 

genes. Based on the insights presented on the four drug targets of the original manuscript this 

does not seem to be the case. For the 5 new genes a comparative analysis to other MR approaches 

would have yielded more insights for supporting the core hypothesis of the paper than a phenome 

scan. 

18+19) I acknowledge the considerable strengths of pQTLs as instruments for cis-MR, yet the 

linearity is not always as simple as stated in the manuscript and rebuttle to justify that pQTLs 

would minimize the risk for horizontal pleiotropy. For instance, increasing numbers of cis-pQTLs 

are also be trans-pQTLs. Sun et al. e.g. discussed examples like MST1, PR3/SERPINA1, or 

GDF8/11/ACV2RB where the same instrument modulates multiple proteins of the same pathway or 

protein complex, limiting conclusions for the cis-drug target in isolation. Pruning for such variants 

(as described in 19) may confound conclusions on the biology of a target and provide a false 

impression on the directionality to modulate a target by drugs. Also, the authors still do not 

provide evidence that jointly using multiple, little characterized instruments within a 2.5kb window 



not just blows up the error rate instead of making cis-MR more sensitive and reliable. 

20) I am still uncertain why the druggable genome continues to be so highlighted in this 

manuscript - clearly, as the authors agree, pQTL-based cis-MR is universally applicable to any 

instrumented protein-coding gene and with new modalities such as biologics, siRNAs/ASOs, gene 

editing or gene therapy having become centerstage, drug development is moving away more and 

more from a defining a distinct subset of the genome as “druggable”. As such, I do not see a need 

to introduce a flashy term such as “drug target MR”, especially since the authors seem to agree it 

is not more than “protein exposure MR”, just with the aim to inform drug development. 

Overall, the manuscript has become very long and would benefit from streamlining.
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Reviewer 1 

1) I appreciate the changes the authors have made to the study and the paper. I think it is a 

much stronger contribution now. 

For what it's worth, I agree with the authors' response to reviewer 2's concern about 

horizontal pleiotropy from cis-pQTLs. I think evidence from GTEx and Sun et al shows that 

cis-eQTLs are more likely to impact multiple genes than cis-pQTLs. 

There are still numerous small typos scattered through-out the paper. The manuscript could 

use a final thorough editorial review but otherwise I fully endorse its publication. 

Response: We thank the reviewer.  We have proofread the manuscript and corrected errors.   
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Reviewer 2 

2) In their revised manuscript, the authors aim to provide clarifications to my concerns by 

adding additional content. Among others, they extend the scope of their work by applying 

cis-MR to five additional drug targets using pQTLs from the INTERVAL study and 

conducting phenome scans across 35 traits. I continue to find merit in the manuscript for 

introducing a mathematical concept why cis-MR on proteins can support drug target 

validation and for well illustrating the various challenges and pitfalls of locus-specific MR. 

However, I remain unconvinced that their approach is novel, and that joint analyses of 

multiple unselected variants per locus will yield more than just incremental insights for the 

vast majority of proteins when analyzed systematically. As is, the manuscript to me does not 

provide sufficient evidence for several of the claims made and overall continues to lean 

towards overstatements, possibly best reflected in a title that is very generic instead of 

specifically stating what’s been done and what’s new. For instance, 

Response: While we would like to acknowledge and address the reviewer’s concern about 

insufficient evidence for claims and any overstatements, the lack of specific examples 

makes it challenge to provide a response. If there are specific sentences or elements that 

are problematic, we would be very happy to review these.  

Regarding the objection to the title, our manuscript attempts to formally define drug target 

validation using Mendelian randomization methods and provide modelling recommendations 

based on theoretical considerations, which are then tested empirically. As such we believe 

our title “Genetic drug target validation using Mendelian randomization”, properly covers the 

content.  

3) Locus-specific MR to validate distinct drug targets is not a new concept, but broadly 

applied in industry and academia. This is evidenced by an increasing number of publications, 

which (on a coarse look-up) include PMID: 25726324 for IL1RN, PMID: 31558144 for F11, 

PMID: 31253830 for IL18, PMID: 30865797 for ACLY, or PMID: 29875488 for IL6R, IL12/23, 

or GP1BA among others.  

Response: do not claim that the use of cis-variants for drug target validation is a novel 

approach. Indeed, we cite several prior examples (many of which we conducted ourselves). 

For example, to our knowledge, the first specific use of this approach to address a drug 

development question was in a 2010 paper from our group (Sofat, Hingorani et al., 

Circulation 2010; 121, 52-62), where “we used common genetic polymorphisms in 

the CETP gene to distinguish whether the hypertensive action of torcetrapib was mechanism 

based or off target, because a genetic study of these variants can be considered to be a 

type of natural randomized trial of a “clean” low-dose CETP inhibitor with no off-target 

actions.”. We went on to write in that paper: “Genetic studies could be used in drug-

development programs as a new source of randomized evidence for drug-target validation in 

humans.” 

Instead our paper attempts to more formally describe the merits, pitfalls, and statistical 

interpretation of such analyses for drug target validation, and in particular the decisions that 

need to be made on the selection of the many genetic instruments that might be used for 
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such analyses in the post-GWAS era, as well as, the emerging opportunity to use integrate 

proteomics data in such analyses, which we believe to be an important advance. 

4) I appreciate the expansion of the manuscript and application of cis-MR to 5 additional 

drug targets, although several of the selected genes have already been analyzed nearly 

identically with pQTL-based MR phenome-scans (across multiple GWAS traits) in the source 

paper (Sun et al., PMID: 29875488; Supplemental Table 16). What would have been 

interesting to compare in this current manuscript is: Does clumping of cis-instruments across 

a gene region as proposed in the manuscript yield benefits to single SNP-based cis-MR (as 

applied by Sun et al.) and colocalization analysis (state of the art now) when applied 

systematically to a larger number of drug target genes. Based on the insights presented on 

the four drug targets of the original manuscript this does not seem to be the case. For the 5 

new genes a comparative analysis to other MR approaches would have yielded more 

insights for supporting the core hypothesis of the paper than a phenome scan. 

Response: As we mentioned in the previous rebuttal letter, as well as in the main text (page 

37-38) that our proposed instrument selection strategy is agnostic of the type of MR method 

(as long as an account is made for LD). As such a comparison between MR estimators 

(while very interesting) is not pertinent to the current manuscript. We do apologize if our 

previous explanation did not clarify this.  

In relation to the analysis of five additional drug targets that, some of which were also 

reported before by Sun et al., we note that our intention was merely to showcase the 

generalizability of our selection strategy beyond lipid targets, not to necessarily identify novel 

causal effect of protein perturbation. Second, we wished to display the scalability of our 

approach, which the reviewer had helped to highlight. Supplemental table 16 (from Sun et 

al) indeed lists three of the five drug targets evaluated by us, (specifically Factor 10, IL12, 

and IL1R1). Together with appendix table 14, however, these tables simply list the p-values 

for a lookup of the sentinel variant at each of these loci with outcomes from prior GWAS (not 

the effect size, nor the direction of effect, nor the effect on the outcome in relation to the 

effect in the encoded protein). Instead of focussing simply on a lookup of genetic effects, we 

used information on genetic effect on the concentration of the encoded protein to estimate 

the direction and rank order of effect of protein perturbation on disease outcomes, using the 

proposed modelling strategy delineated in the manuscript and extended this to consider 35 

therapeutically relevant outcomes.   

5) I acknowledge the considerable strengths of pQTLs as instruments for cis-MR, yet the 

linearity is not always as simple as stated in the manuscript and rebuttle to justify that pQTLs 

would minimize the risk for horizontal pleiotropy. For instance, increasing numbers of cis-

pQTLs are also be trans-pQTLs. Sun et al. e.g. discussed examples like MST1, 

PR3/SERPINA1, or GDF8/11/ACV2RB where the same instrument modulates multiple 

proteins of the same pathway or protein complex, limiting conclusions for the cis-drug target 

in isolation. Pruning for such variants (as described in 19) may confound conclusions on the 

biology of a target and provide a false impression on the directionality to modulate a target 
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by drugs. Also, the authors still do not provide evidence that jointly using multiple, little 

characterized instruments within a 2.5kb window not just blows up the error rate instead of 

making cis-MR more sensitive and reliable. 

Response: We are glad the reviewer now acknowledges the considerable strengths of cis-

MR.  We agree that cis-MR analysis does not preclude horizontal pleiotropy, merely that cis-

MR instrumenting genetic effects through the encoded protein very substantially diminishes 

the chances of horizontal pleiotropy compared to other types of MR analysis  We describe 

using the traditional outlier and leverage statistics to detect its presence and introduce an 

eQTL based screening step (see methods) that further diminishes the risk of horizontal 

pleiotropy. With respect to the observation raised again by the reviewer that cis-pQTLS may 

be trans pQTLs for other proteins, we argued at length in the prior rebuttal as to why this is 

to be expected but why also it does not affect our argument. We introduced supplementary 

Figure 8 and a discussion on cis instruments on pp41-42 of the appendix which fully rebuts 

the point the reviewer once again refers to here. For this reason, we do not expand again on 

our arguments here. 

The 2.5kb flanking region is merely used as an opportunistic window to decrease the 

potential of LD related horizontal pleiotropy. Nowhere do we suggest that this should always 

be used, and we evaluate multiple regions alternative region sizes as discussed in 

Supplemental Discussion section. As mentioned before (see Page 40 and references 45 and 

49), the type 1 error rate is safeguarded through LD-modelling using an external reference 

populations.  

6) I am still uncertain why the druggable genome continues to be so highlighted in this 

manuscript - clearly, as the authors agree, pQTL-based cis-MR is universally applicable to 

any instrumented protein-coding gene and with new modalities such as biologics, 

siRNAs/ASOs, gene editing or gene therapy having become centerstage, drug development 

is moving away more and more from a defining a distinct subset of the genome as 

“druggable”. As such, I do not see a need to introduce a flashy term such as “drug target 

MR”, especially since the authors seem to agree it is not more than “protein exposure MR”, 

just with the aim to inform drug development. 

Response: We believe that our paper already adequately addresses the issue that cis-MR 

of proteins is relevant to understanding the disease relationships of any encoded protein but 

that there may be a specific therapeutic interest in a protein if it is also likely to be druggable 

by small molecule or monoclonal antibody therapeutics. We fully agree that siRNAs and 

ASOs provide alternative therapeutic strategies if an encoded protein is not readily 

druggable and if the expression of the gene of interest is in a tissue (e.g. liver that is 

accessible to siRNAs/ASOs. Indeed the approach we describe can also be used to assess 

the validity of targets for siRNAs/ASOs.  However, proteins remain the main class of 

therapeutic targets and are likely to remain so for the foreseeable future.  

We additionally note that the concept of drug target MR (as well as its name) has been 

introduced before.  
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7) Overall, the manuscript has become very long and would benefit from streamlining. 

Response: We agree with the reviewer and have reduce the manuscript down to 

approximately 5000 words.  We hope it is now more concise and easier to read.  


